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Stochastic resonance in bistable systems subject to signal and quasimonochromatic noise
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A bistable system subject to a periodic signal and quasimonochromatic noise (narrow band) is investi-
gated. The system is experimentally realized by a set of linear and nonlinear electric devices, and
stochastic-resonance-like responses of the system to the input are found. Under the optimal match of
the control parameters the signal-to-noise ratio of the output may be higher than that of the input by a
factor of 10, if the signal-to-noise ratio is defined in terms of power spectra.

PACS number(s): 05.40.+j, 05.20.—y

In the recent decade the topic of stochastic resonance
(SR) has attracted much attention in the nonlinear sci-
ence community [1-10]. A model most extensively in-
vestigated is a bistable system subject to sinusoidal signal
and white noise

%(t)=x—x3+U coswt +I'(z) ,

(1)
(T())=0, (T()[(¢'))=2D&(t—1¢').

The interplay between the periodic force, white noise,
and bistable system has been analyzed in a great detail.
However, a problem of theoretical significance and prac-
tical importance, how various noise parts at different fre-
quencies play a role in this interplay, especially, how the
noise part with spectra close to the input frequency
(which will be called the same frequency noise, i.e., the
SFN) plays a role, is completely unsolved to date. The
study of SFN is extremely interesting, since noise with
frequency far from the signal frequency can be easily el-
iminated by a linear filter while it is much more difficult
to eliminate SFN by applying linear treatments. There-
fore it will become a great advantage if the SR device can
reduce SFN.

A major portion of investigations on SR have focused
on the study of the signal-to-noise ratio (SNR), because
SNR represents the quality of a signal which plays a cen-
tral role in the information transfer. Considerable efforts
have been devoted to answer the problem of whether the
SR devices can enhance SNR better than a linear filter,
i.e., whether the SNR of the output from a SR device can
be higher than that of the input. To date, all answers to
this problem by considering model (1) are negative.

In this paper, we propose a model of a bistable system
subject to a periodic signal and quasimonochromatic
noise. By quasimonochromatic noise we mean zero-mean
Gaussian noise with a power spectrum having a narrow
Lorentzian peak centered at a certain finite frequency.
An electric circuit set is designed to realize this system.
A stochastic-resonance response of the system to the in-
put is found. In experiment we get an output with SNR
much higher than that of the input under optimal condi-
tions.
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To investigate the interplay of quasimonochromatic
noise with the periodic signal and the bistable system, we
replace Eq. (1) by the following model:

X()=x—x3+z(1), (2a)
F () +rp()+Quf)p(£)=U cos(2mfot )+ H(t) , (2b)
z(t)=ky(z) . (2c)

We put f=f, afterwards unless specified otherwise. In
Eq. (2c) we use a linear amplifier to flexibly adjust the
strength of the input in (2a) to reach the optimal condi-
tion. It is an easy matter to realize system (2) by using a
set of electric circuits represented in Fig. 1, where LF is a
two-pole linear filter representing (2b), LA is a linear
amplifier in which k can be freely varied in the relevant
range, SRD is the bistable system of (2a) of which the de-
tailed structure is given in Ref. [11] (and in many similar
SR analog simulation sets). M’s are one-pole Butterworth
low-frequency-passing filters for avoiding the aliasing
effect. In our experiment we read the signal
U cos(2mfyt) and noise H directly from the signal and
noise generators, respectively. The effective voltage H is
obviously proportional to V'D. The concrete proportion
coefficient is not relevant to our problem, and not
specified. In the following we fix ;=120 Hz and vary U,
H, k, and the quality factor of LF, Q =2uwf,/r, to
investigate the system response to the input I(?)
=U cos(2mfyt)+H(t).

The system (2) (or the device Fig. 1) is rather practical.
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FIG. 1. The block of the experimental set.
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It represents reasonable ideas in dealing with signal and
noise. Given an input we often first use linear filters to
rule out noise. In case linear devices cannot help, we in-
voke nonlinear treatments to further enhance SNR. It is
interesting to ask whether the combinative use of linear
filter and bistable system can reach SNR higher than that
obtained by separately using a linear filter or a bistable
device alone.

Conventionally, the SNR (R) is defined by the ratio of
the signal power to the noise power of unit background
spectra at the input frequency. For convenience, in ex-
periments one often uses spectra of measured time series
[e.g., the measured data of I(¢)] instead of the power
spectra to compute SNR (R); it is obvious that R < V' R.
Throughout the paper we will consider 2, and use the
notation 7 instead of 2. Experimentally, the SNR is
measured as the ratio of the spectrum height at the input
frequency to the average height of the side spectra in the
vicinity of the input frequency which is regarded as the
height of the SFN spectrum. This definition works well
as the background noise spectra around f, are flat. How-
ever, with a linear filter the noise spectrum has a sharp
peak at f), and the above approach turns out to be incon-
venient.

In this paper, we will use an alternative definition of
SNR. We make N (N =100 for our plots) identical exper-
iments, and get the spectra of the time series in experi-
ments. Then we measure the height of the spectrum at
fo only, which is denoted by A4; for the ith experiment.
We regard the average ( 4 )=3N_, 4,/N and the fluc-
tuation
N 172
(A4, —(A4))

i=1

\/(8A2>=71V—

as the signal amplitude and noise strength, respectively.
Now SNR is defined by the inverse relative fluctuation

R=(A)/V{842) . (3)

For each experiment we use total integration time 7 =1
second and sampling frequency v=2048 per second. In
Figs. 2(a) and 2(b) we fix U=0.02 V, H =0.7 V, and plot
SNR of z(¢t) (R) vs k and Q, respectively. Both curves
are horizontal lines. The SNR cannot be changed by ei-
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FIG. 2. R; against k (a) and Q (b). f,=120 Hz (the same in
all the following figures), U=0.02 V, H=0.7 V. Linear filter
and amplifier do not change R; .
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FIG. 3. G,, vs B, B=V2H /U, Q=73. At G,, gets its max-
imum G,,.

ther linear amplifier (varying k), or linear filter (varying
Q) in the given ranges. This feature is reasonable since
the SNR defined in (3) takes account of only the SFN,
and represents the intrinsic quality irrelevant to linear
treatments.

We denote the SNR’s of the output x (#) and the input
z(t) [or, equally, y (¢) or I(2)] by Rgg and R, , respective-
ly. The key point is whether we can get Rgg > R, , name-
ly, whether the quantity

G=Rgs /R, @)

can be larger than 1. The new SNR, defined in (3), is pro-
portional to the standard SNR though the absolute
values of the new and old SNR’s are different. Then the
ratio (4) computed by using the new definition of SNR is
identical to that obtained by using the standard SNR
definition. This identity is verified in experiments as the
noise spectrum around f; is flat. As the noise spectrum
is sharply peaked at f the large fluctuation and inaccu-
racy in measurement of the average height of the side
spectra makes the standard approach unpractical. Then
we have to use the new SNR definition to compute G.
Without a linear filter, i.e., for Eq. (1), we find G 1
whatever U and H. However, the situation is dramatical-
ly changed for finite Q in Egs. (2).

We proceed with our experiment as follows: Given a
combination of Q, U, and H, we first change k, measure
G for each k, and get G,,, the largest G with respect to k.
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FIG. 4. G,, vs Q. B=50.
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FIG.5. G, vs O (a) and B vs Q (b).

Then we vary H to get the corresponding G,,. In Fig. 3
we plot G,, against 3=V 2H /U for Q =73. (Note, after
adjusting k, the absolute values of H and U become unim-
portant; the ratio B=V2H /U is the relevant quantity).
In Fig. 4, we fix =50 and plot G,, vs Q. It is striking
that both curves in Figs. 3 and 4 are peaked at certain 3
or Q. We will call these peaks also stochastic resonance.
However, here the peaked function G is neither the am-
plitude of the output signal nor the SNR of the output.
The quantity G shows how much the device in Fig. 1 can
improve the signal quality better than linear systems.
Especially, the peak in Fig. 4 is with respect to the quan-
tity Q; that manifests a different type of “SR.” Changing
Q can change both signal amplitude and noise intensity.
However, for a linear filter, it does not change SNR (Fig.
2), while for a nonlinear filter it does considerably change
SNR and, consequently, change the quantity G. The ex-
istence of the optimal Q causes the SR-like response of
the system to the input for the given 3.

In Fig. 3 the peak position and height are indicated by
B and G,,, respectively, @m and f3 are functions of Q. In
Figs. S(a) and 5(b) we plot Gm and B against Q, respec-
tively. From the figures the following points are worth
remarking. First, as Q —0 we find G,, 1; that is con-
sistent with all the previous results obtained for model
(1). Second, for small Q the @m -Q curve goes up very
rapidly. This point is very useful for practical purposes.
Helped by a linear filter with low quality factor, the SR
device can enhance SNR rather effectively. Third, we
can get @m > 1 at finite Q. Thus, by applying the set Fig.
1, we can exceed the limit of linear treatment and get out-
put with SNR higher than that of the input. We find
that G can be larger than 3, indicating that the SNR of
the output can be higher than that of the input by a fac-
tor up to 10 if we compute SNR in terms of power spec-
tra. Finally, Bis a monotonously increasing function of
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FIG. 6. Rgz and R; vs f. Q =73, B=60. Both curves have
peaks at f = f,. Rgg is much higher than R, at f= fj.

Q. This fact is of crucial importance for application.
Practically, it is most interesting to extract a weak signal
from a strong noise. From Fig. 5(b) we know how to use
a combination of linear and nonlinear devices to attack
this goal. Actually, in this paper we are dealing with an
input with SNR some ten times lower than that in Ref.
[11] where the system (1) is investigated experimentally.

It is not difficult to intuitively understand the mecha-
nism underlying Fig. 5 from the point of view of energy
transfer. It is well known that under SR conditions the
output signal may take some energy from the output
noise. However, this energy transfer comes from the en-
tire noise spectra [4,7,8]. In the case of white noise input
this energy transfer is shared by widely distributed spec-
tra and the noise reduction of the output at the signal fre-
quency (i.e., the SFN) is limited. If we filter out some
side-frequency-noise in the input, the SR device may
more effectively transfer energy from the SFN to the sig-
nal and largely enhance SNR. For larger input noise
(large B) we need larger Q to filter more side-spectra-noise
for considerably reducing the SFN; that explains the
monotonous behavior of Fig. 5(b).

In the previous discussions we fixed f=f, in Egs. (2).
However, it by no means indicates that we need a fore-
knowledge of the input frequency. Actually, we can find
the input frequency in our experiment in a consistent
manner. In Fig. 6 we fix ;=120 Hz, =60, Q =73, and
vary f in Eq. (2b) in a wide range, assuming f, to be un-
known. We plot Rgz and R; against f where Rgz and
R; are measured at the given frequency f and maximal
with respect to k. The two curves have peaks at f=f.
Hence f is “found” by the system itself. On the other
hand, the peak of Rgy is much higher than that of R, .
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